Compare XPUs

Select up to 5 XPUs to compare side-by-side

Select XPUs to Compare

Showing 72 XPUs5 selected

Alibaba

Hanguang 800

AMD

MI100

23.1 TFLOPs

AMD

MI210

181 TFLOPs

AMD

MI250X

383 TFLOPs

AMD

MI300A

980.6 TFLOPs

AMD

MI300X

1,307 TFLOPs

AMD

MI325X

1,400 TFLOPs

AMD

MI350X

2,100 TFLOPs

AMD

Radeon PRO W7900

122 TFLOPs

AMD

Radeon RX 7900 XT

104 TFLOPs

AMD

Radeon RX 7900 XTX

122 TFLOPs

AWS

Inferentia2

190 TFLOPs

AWS

Trainium

190 TFLOPs

AWS

Trainium2

680 TFLOPs

Baidu

Kunlun II

Biren Technology

BR100

Cambricon

MLU370

256 TFLOPs

Cerebras

WSE-3

Enflame Technology

CloudBlazer T20

Etched

Sohu

10,000 TFLOPs

FuriosaAI

Warboy

Google

TPU v4

275 TFLOPs

Google

TPU v5e

197 TFLOPs

Google

TPU v5p

459 TFLOPs

Google

TPU v6e (Trillium)

918 TFLOPs

Graphcore

Bow IPU

Graphcore

IPU-M2000

Groq

LPU Inference Engine

Huawei

Ascend 910B

Iluvatar CoreX

BI-V150

300 TFLOPs

Intel

Data Center GPU Max 1100

177 TFLOPs

Intel

Data Center GPU Max 1550

419 TFLOPs

Intel Habana

Gaudi 2

432 TFLOPs

Intel Habana

Gaudi 3

1,835 TFLOPs

Meta

MTIA v1

Microsoft

Maia 100

700 TFLOPs

Moore Threads

MTT S80

NVIDIA

A10

125 TFLOPs

NVIDIA

A100 SXM

312 TFLOPs

NVIDIA

A40

150 TFLOPs

NVIDIA

B200

2,250 TFLOPs

NVIDIA

GB200 NVL72

360,000 TFLOPs

NVIDIA

GB200 Superchip

5,000 TFLOPs

NVIDIA

GeForce RTX 4060 Ti

44.2 TFLOPs

NVIDIA

GeForce RTX 4070

58.2 TFLOPs

NVIDIA

GeForce RTX 4070 Super

71 TFLOPs

NVIDIA

GeForce RTX 4070 Ti

80.2 TFLOPs

NVIDIA

GeForce RTX 4070 Ti Super

88.2 TFLOPs

NVIDIA

GeForce RTX 4080

97.5 TFLOPs

NVIDIA

GeForce RTX 4080 Super

104.4 TFLOPs

NVIDIA

GeForce RTX 4090

165.2 TFLOPs

NVIDIA

GeForce RTX 5070

61.6 TFLOPs

NVIDIA

GeForce RTX 5070 Ti

88 TFLOPs

NVIDIA

GeForce RTX 5080

112.6 TFLOPs

NVIDIA

GeForce RTX 5090

209.5 TFLOPs

NVIDIA

H100 PCIe

1,513 TFLOPs

NVIDIA

H100 SXM

1,979 TFLOPs

NVIDIA

H200 PCIe

1,513 TFLOPs

NVIDIA

H200 SXM

1,979 TFLOPs

NVIDIA

L4

121 TFLOPs

NVIDIA

L40S

733 TFLOPs

NVIDIA

RTX 4000 Ada Generation

53.4 TFLOPs

NVIDIA

RTX 5000 Ada Generation

130.6 TFLOPs

NVIDIA

RTX 6000 Ada Generation

182.2 TFLOPs

NVIDIA

RTX PRO 6000 Blackwell Max-Q

125 TFLOPs

NVIDIA

RTX PRO 6000 Blackwell Server Edition

250 TFLOPs

NVIDIA

RTX PRO 6000 Blackwell Workstation Edition

250 TFLOPs

Qualcomm

Cloud AI 100

50 TFLOPs

Rebellions

ATOM

SambaNova

SN40L

Tenstorrent

Grayskull

200 TFLOPs

Tenstorrent

Wormhole

364 TFLOPs

Maximum of 5 XPUs can be compared at once. Deselect one to add another.

Multi-Metric Comparison

Relative performance across 5 key metrics (normalized to 100 = best in comparison)

Compute Performance (BF16)

Memory Capacity

Power Consumption

Power Efficiency

Specifications

SpecificationNVIDIA A100 SXMTenstorrent GrayskullAMD MI300AEtched SohuHuawei Ascend 910B
ArchitectureAmpereTensix CoreCDNA 3Transformer ASICDa Vinci
Form FactorSXMOAMPCIe
VRAM80 GB8 GB128 GB144 GB64 GB
Memory Bandwidth2,039 GB/s5,300 GB/s4,800 GB/s
TFLOPs (FP32)19.5122.610,000
TFLOPs (FP16)312980.6640
TFLOPs312200980.610,000
TFLOPs (FP8)
TDP400 W65 W760 W700 W400 W
Launch DateMay 2020Mar 2021Dec 2023Jun 2024Aug 2023

Efficiency Metrics

MetricA100 SXMGrayskullMI300ASohuAscend 910B
TFLOPs per Watt (FP32-eq)0.391.540.6514.29
Memory Bandwidth per GB25.5 GB/s41.4 GB/s33.3 GB/s

Performance Equivalence

How many units of each GPU are needed to match the performance of the others?

To match 1x NVIDIA A100 SXM

Tenstorrent Grayskull
Compute (FP32-eq)
1.56x
Need 1.56x Grayskull
VRAM
10.00x
Need 10.00x Grayskull
AMD MI300A
Compute (FP32-eq)
0.32x
MI300A is 3.14x faster
FP32 Compute
0.16x
MI300A is 6.29x faster
VRAM
0.63x
MI300A has 1.60x more
Memory Bandwidth
0.38x
MI300A has 2.60x more
Etched Sohu
Compute (FP32-eq)
0.02x
Sohu is 64.10x faster
FP32 Compute
0.00x
Sohu is 512.82x faster
VRAM
0.56x
Sohu has 1.80x more
Memory Bandwidth
0.42x
Sohu has 2.35x more
Huawei Ascend 910B
VRAM
1.25x
Need 1.25x Ascend 910B

To match 1x Tenstorrent Grayskull

NVIDIA A100 SXM
Compute (FP32-eq)
0.64x
A100 SXM is 1.56x faster
VRAM
0.10x
A100 SXM has 10.00x more
AMD MI300A
Compute (FP32-eq)
0.20x
MI300A is 4.90x faster
VRAM
0.06x
MI300A has 16.00x more
Etched Sohu
Compute (FP32-eq)
0.01x
Sohu is 100.00x faster
VRAM
0.06x
Sohu has 18.00x more
Huawei Ascend 910B
VRAM
0.13x
Ascend 910B has 8.00x more

To match 1x AMD MI300A

NVIDIA A100 SXM
Compute (FP32-eq)
3.14x
Need 3.14x A100 SXM
FP32 Compute
6.29x
Need 6.29x A100 SXM
VRAM
1.60x
Need 1.60x A100 SXM
Memory Bandwidth
2.60x
Need 2.60x A100 SXM
Tenstorrent Grayskull
Compute (FP32-eq)
4.90x
Need 4.90x Grayskull
VRAM
16.00x
Need 16.00x Grayskull
Etched Sohu
Compute (FP32-eq)
0.05x
Sohu is 20.40x faster
FP32 Compute
0.01x
Sohu is 81.57x faster
VRAM
0.89x
Sohu has 1.13x more
Memory Bandwidth
1.10x
Need 1.10x Sohu
Huawei Ascend 910B
VRAM
2.00x
Need 2.00x Ascend 910B

To match 1x Etched Sohu

NVIDIA A100 SXM
Compute (FP32-eq)
64.10x
Need 64.10x A100 SXM
FP32 Compute
512.82x
Need 512.82x A100 SXM
VRAM
1.80x
Need 1.80x A100 SXM
Memory Bandwidth
2.35x
Need 2.35x A100 SXM
Tenstorrent Grayskull
Compute (FP32-eq)
100.00x
Need 100.00x Grayskull
VRAM
18.00x
Need 18.00x Grayskull
AMD MI300A
Compute (FP32-eq)
20.40x
Need 20.40x MI300A
FP32 Compute
81.57x
Need 81.57x MI300A
VRAM
1.13x
Need 1.13x MI300A
Memory Bandwidth
0.91x
MI300A has 1.10x more
Huawei Ascend 910B
VRAM
2.25x
Need 2.25x Ascend 910B

To match 1x Huawei Ascend 910B

NVIDIA A100 SXM
VRAM
0.80x
A100 SXM has 1.25x more
Tenstorrent Grayskull
VRAM
8.00x
Need 8.00x Grayskull
AMD MI300A
VRAM
0.50x
MI300A has 2.00x more
Etched Sohu
VRAM
0.44x
Sohu has 2.25x more

Pricing

Price TypeA100 SXMGrayskullMI300ASohuAscend 910B
CAPEX (Street Price)$15,000
OPEX (per hour)$4.05/hr
Price per TFLOPs (FP32-eq)$96